Can Stochastic Zeroth-Order Frank-Wolfe Method Converge Faster for Non-Convex Problems?

ICML 2020  ·  Hongchang Gao, Heng Huang ·

Frank-Wolfe algorithm is an efficient method for optimizing non-convex constrained problems. However, most of existing methods focus on the first-order case. In real-world applications, the gradient is not always available. To address the problem of lacking gradient in many applications, we propose two new stochastic zeroth-order Frank-Wolfe algorithms and theoretically proved that they have a faster convergence rate than existing methods for non-convex problems. Specifically, the function queries oracle of the proposed faster zeroth-order Frank-Wolfe (FZFW) method is $O(\frac{n^{1/2}d}{\epsilon^2})$ which can match the iteration complexity of the first-order counterpart approximately. As for the proposed faster zeroth-order conditional gradient sliding (FZCGS) method, its function queries oracle is improved to $O(\frac{n^{1/2}d}{\epsilon})$, indicating that its iteration complexity is even better than that of its first-order counterpart NCGS-VR. In other words, the iteration complelxity of the accelerated first-order Frank-Wolfe method NCGS-VR is suboptimal. Then, we proposed a new algorithm to improve its IFO (incremental first-order oracle) to $O(\frac{n^{1/2}}{\epsilon})$. At last, the empirical studies on benchmark datasets validate our theoretical results.

PDF ICML 2020 PDF
No code implementations yet. Submit your code now

Tasks


Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here