Capturing Fine-grained Semantics in Contrastive Graph Representation Learning

23 Apr 2023  ·  Lin Shu, Chuan Chen, Zibin Zheng ·

Graph contrastive learning defines a contrastive task to pull similar instances close and push dissimilar instances away. It learns discriminative node embeddings without supervised labels, which has aroused increasing attention in the past few years. Nevertheless, existing methods of graph contrastive learning ignore the differences between diverse semantics existed in graphs, which learn coarse-grained node embeddings and lead to sub-optimal performances on downstream tasks. To bridge this gap, we propose a novel Fine-grained Semantics enhanced Graph Contrastive Learning (FSGCL) in this paper. Concretely, FSGCL first introduces a motif-based graph construction, which employs graph motifs to extract diverse semantics existed in graphs from the perspective of input data. Then, the semantic-level contrastive task is explored to further enhance the utilization of fine-grained semantics from the perspective of model training. Experiments on five real-world datasets demonstrate the superiority of our proposed FSGCL over state-of-the-art methods. To make the results reproducible, we will make our codes public on GitHub after this paper is accepted.

PDF Abstract

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods