Car Type Recognition with Deep Neural Networks

23 Feb 2016  ·  Heikki Huttunen, Fatemeh Shokrollahi Yancheshmeh, Ke Chen ·

In this paper we study automatic recognition of cars of four types: Bus, Truck, Van and Small car. For this problem we consider two data driven frameworks: a deep neural network and a support vector machine using SIFT features. The accuracy of the methods is validated with a database of over 6500 images, and the resulting prediction accuracy is over 97 %. This clearly exceeds the accuracies of earlier studies that use manually engineered feature extraction pipelines.

PDF Abstract


  Add Datasets introduced or used in this paper

Results from the Paper

  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.


No methods listed for this paper. Add relevant methods here