Cascade of correlated electron states in a kagome superconductor CsV3Sb5

4 Mar 2021  ·  He Zhao, Hong Li, Brenden R. Ortiz, Samuel M. L. Teicher, Taka Park, Mengxing Ye, Ziqiang Wang, Leon Balents, Stephen D. Wilson, Ilija Zeljkovic ·

The kagome lattice of transition metal atoms provides an exciting platform to study electronic correlations in the presence of geometric frustration and nontrivial band topology, which continues to bear surprises. In this work, using spectroscopic imaging scanning tunneling microscopy, we discover a cascade of different symmetry-broken electronic states as a function of temperature in a new kagome superconductor, CsV3Sb5. At a temperature far above the superconducting transition Tc ~ 2.5 K, we reveal a tri-directional charge order with a 2a0 period that breaks the translation symmetry of the lattice. As the system is cooled down towards Tc, we observe a prominent V-shape spectral gap opening at the Fermi level and an additional breaking of the six-fold rotation symmetry, which persists through the superconducting transition. This rotation symmetry breaking is observed as the emergence of an additional 4a0 unidirectional charge order and strongly anisotropic scattering in differential conductance maps. The latter can be directly attributed to the orbital-selective renormalization of the V kagome bands. Our experiments reveal a complex landscape of electronic states that can co-exist on a kagome lattice, and provide intriguing parallels to high-Tc superconductors and twisted bilayer graphene.

PDF Abstract
No code implementations yet. Submit your code now

Categories


Superconductivity Strongly Correlated Electrons