Cascaded Convolutional Neural Networks with Perceptual Loss for Low Dose CT Denoising

26 Jun 2020  ·  Sepehr Ataei, Dr. Javad Alirezaie, Dr. Paul Babyn ·

Low Dose CT Denoising research aims to reduce the risks of radiation exposure to patients. Recently researchers have used deep learning to denoise low dose CT images with promising results. However, approaches that use mean-squared-error (MSE) tend to over smooth the image resulting in loss of fine structural details in low contrast regions of the image. These regions are often crucial for diagnosis and must be preserved in order for Low dose CT to be used effectively in practice. In this work we use a cascade of two neural networks, the first of which aims to reconstruct normal dose CT from low dose CT by minimizing perceptual loss, and the second which predicts the difference between the ground truth and prediction from the perceptual loss network. We show that our method outperforms related works and more effectively reconstructs fine structural details in low contrast regions of the image.

PDF Abstract
No code implementations yet. Submit your code now

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here