Cascading Bandit under Differential Privacy

24 May 2021  ·  Kun Wang, Jing Dong, Baoxiang Wang, Shuai Li, Shuo Shao ·

This paper studies \emph{differential privacy (DP)} and \emph{local differential privacy (LDP)} in cascading bandits. Under DP, we propose an algorithm which guarantees $\epsilon$-indistinguishability and a regret of $\mathcal{O}((\frac{\log T}{\epsilon})^{1+\xi})$ for an arbitrarily small $\xi$. This is a significant improvement from the previous work of $\mathcal{O}(\frac{\log^3 T}{\epsilon})$ regret. Under ($\epsilon$,$\delta$)-LDP, we relax the $K^2$ dependence through the tradeoff between privacy budget $\epsilon$ and error probability $\delta$, and obtain a regret of $\mathcal{O}(\frac{K\log (1/\delta) \log T}{\epsilon^2})$, where $K$ is the size of the arm subset. This result holds for both Gaussian mechanism and Laplace mechanism by analyses on the composition. Our results extend to combinatorial semi-bandit. We show respective lower bounds for DP and LDP cascading bandits. Extensive experiments corroborate our theoretic findings.

PDF Abstract
No code implementations yet. Submit your code now

Tasks


Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here