Causal discovery with scale-mixture model for spatiotemporal variance dependencies

NeurIPS 2012  ·  Zhitang Chen, Kun Zhang, Laiwan Chan ·

In conventional causal discovery, structural equation models (SEM) are directly applied to the observed variables, meaning that the causal effect can be represented as a function of the direct causes themselves. However, in many real world problems, there are significant dependencies in the variances or energies, which indicates that causality may possibly take place at the level of variances or energies. In this paper, we propose a probabilistic causal scale-mixture model with spatiotemporal variance dependencies to represent a specific type of generating mechanism of the observations. In particular, the causal mechanism including contemporaneous and temporal causal relations in variances or energies is represented by a Structural Vector AutoRegressive model (SVAR). We prove the identifiability of this model under the non-Gaussian assumption on the innovation processes. We also propose algorithms to estimate the involved parameters and discover the contemporaneous causal structure. Experiments on synthesis and real world data are conducted to show the applicability of the proposed model and algorithms.

PDF Abstract
No code implementations yet. Submit your code now

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here