Predictive Coding beyond Correlations

27 Jun 2023  ·  Tommaso Salvatori, Luca Pinchetti, Amine M'Charrak, Beren Millidge, Thomas Lukasiewicz ·

Recently, there has been extensive research on the capabilities of biologically plausible algorithms. In this work, we show how one of such algorithms, called predictive coding, is able to perform causal inference tasks. First, we show how a simple change in the inference process of predictive coding enables to compute interventions without the need to mutilate or redefine a causal graph. Then, we explore applications in cases where the graph is unknown, and has to be inferred from observational data. Empirically, we show how such findings can be used to improve the performance of predictive coding in image classification tasks, and conclude that such models are able to perform simple end-to-end causal inference tasks.

PDF Abstract

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here