Causal models for dynamical systems

17 Jan 2020  ·  Jonas Peters, Stefan Bauer, Niklas Pfister ·

A probabilistic model describes a system in its observational state. In many situations, however, we are interested in the system's response under interventions. The class of structural causal models provides a language that allows us to model the behaviour under interventions. It can been taken as a starting point to answer a plethora of causal questions, including the identification of causal effects or causal structure learning. In this chapter, we provide a natural and straight-forward extension of this concept to dynamical systems, focusing on continuous time models. In particular, we introduce two types of causal kinetic models that differ in how the randomness enters into the model: it may either be considered as observational noise or as systematic driving noise. In both cases, we define interventions and therefore provide a possible starting point for causal inference. In this sense, the book chapter provides more questions than answers. The focus of the proposed causal kinetic models lies on the dynamics themselves rather than corresponding stationary distributions, for example. We believe that this is beneficial when the aim is to model the full time evolution of the system and data are measured at different time points. Under this focus, it is natural to consider interventions in the differential equations themselves.

PDF Abstract
No code implementations yet. Submit your code now

Categories


Methodology Dynamical Systems

Datasets


  Add Datasets introduced or used in this paper