CG-DIQA: No-reference Document Image Quality Assessment Based on Character Gradient

11 Jul 2018  ·  Hongyu Li, Fan Zhu, Junhua Qiu ·

Document image quality assessment (DIQA) is an important and challenging problem in real applications. In order to predict the quality scores of document images, this paper proposes a novel no-reference DIQA method based on character gradient, where the OCR accuracy is used as a ground-truth quality metric. Character gradient is computed on character patches detected with the maximally stable extremal regions (MSER) based method. Character patches are essentially significant to character recognition and therefore suitable for use in estimating document image quality. Experiments on a benchmark dataset show that the proposed method outperforms the state-of-the-art methods in estimating the quality score of document images.

PDF Abstract

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here