Chaining Bounds for Empirical Risk Minimization

7 Sep 2016  ·  Gábor Balázs, András György, Csaba Szepesvári ·

This paper extends the standard chaining technique to prove excess risk upper bounds for empirical risk minimization with random design settings even if the magnitude of the noise and the estimates is unbounded. The bound applies to many loss functions besides the squared loss, and scales only with the sub-Gaussian or subexponential parameters without further statistical assumptions such as the bounded kurtosis condition over the hypothesis class. A detailed analysis is provided for slope constrained and penalized linear least squares regression with a sub-Gaussian setting, which often proves tight sample complexity bounds up to logartihmic factors.

PDF Abstract
No code implementations yet. Submit your code now

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here