Chance Constrained Economic Dispatch Considering the Capability of Network Flexibility Against Renewable Uncertainties

23 Jul 2021  ·  Yue Song, Tao Liu, David J. Hill ·

This paper incorporates a continuous-type network flexibility into chance constrained economic dispatch (CCED). In the proposed model, both power generations and line susceptances are continuous variables to minimize the expected generation cost and guarantee a low probability of constraint violation in terms of generations and line flows under renewable uncertainties. From the analytical form of CCED, we figure out the mechanism of network flexibility against uncertainties -- while renewable uncertainties shrink the usable line capacities and aggravate transmission congestion, network flexibility mitigates congestion by re-routing the base-case line flows and reducing the line capacity shrinkage caused by uncertainties. Further, we propose an alternate iteration solver for this problem. By duality theory, we set up a master problem in the form of second-order cone programming to optimize generation dispatch scheme and a subproblem in the form of linear programming to optimize line susceptances. A satisfactory solution can be obtained efficiently by alternately solving these two problems. The proposed method applies to both Gaussian uncertainty and non-Gaussian uncertainty by means of Gaussian mixture model. The case studies on the IEEE 14-bus system and IEEE 118-bus system suggest that network flexibility can significantly improve operational economy while ensuring security under uncertainties.

PDF Abstract
No code implementations yet. Submit your code now

Tasks


Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here