Character-Level Neural Translation for Multilingual Media Monitoring in the SUMMA Project

LREC 2016 Guntis BarzdinsSteve RenalsDidzis Gosko

The paper steps outside the comfort-zone of the traditional NLP tasks like automatic speech recognition (ASR) and machine translation (MT) to addresses two novel problems arising in the automated multilingual news monitoring: segmentation of the TV and radio program ASR transcripts into individual stories, and clustering of the individual stories coming from various sources and languages into storylines. Storyline clustering of stories covering the same events is an essential task for inquisitorial media monitoring... (read more)

PDF Abstract LREC 2016 PDF LREC 2016 Abstract

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods used in the Paper


METHOD TYPE
🤖 No Methods Found Help the community by adding them if they're not listed; e.g. Deep Residual Learning for Image Recognition uses ResNet