Characterizing Quantifier Fuzzification Mechanisms: a behavioral guide for practical applications

11 May 2016  ·  F. Diaz-Hermida, M. Pereira-Fariña, Juan. C. Vidal, A. Ramos-Soto ·

Important advances have been made in the fuzzy quantification field. Nevertheless, some problems remain when we face the decision of selecting the most convenient model for a specific application... In the literature, several desirable adequacy properties have been proposed, but theoretical limits impede quantification models from simultaneously fulfilling every adequacy property that has been defined. Besides, the complexity of model definitions and adequacy properties makes very difficult for real users to understand the particularities of the different models that have been presented. In this work we will present several criteria conceived to help in the process of selecting the most adequate Quantifier Fuzzification Mechanisms for specific practical applications. In addition, some of the best known well-behaved models will be compared against this list of criteria. Based on this analysis, some guidance to choose fuzzy quantification models for practical applications will be provided. read more

PDF Abstract
No code implementations yet. Submit your code now



  Add Datasets introduced or used in this paper

Results from the Paper

  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.


No methods listed for this paper. Add relevant methods here