Chetaev Instability Framework for Kinetostatic Compliance-Based Protein Unfolding

15 May 2022  ·  Alireza Mohammadi, Mark W. Spong ·

Understanding the process of protein unfolding plays a crucial role in various applications such as design of folding-based protein engines. Using the well-established kinetostatic compliance (KCM)-based method for modeling of protein conformation dynamics and a recent nonlinear control theoretic approach to KCM-based protein folding, this paper formulates protein unfolding as a destabilizing control analysis/synthesis problem. In light of this formulation, it is shown that the Chetaev instability framework can be used to investigate the KCM-based unfolding dynamics. In particular, a Chetaev function for analysis of unfolding dynamics under the effect of optical tweezers and a class of control Chetaev functions for synthesizing control inputs that elongate protein strands from their folded conformations are presented. Based on the presented control Chetaev function, an unfolding input is derived from the Artstein-Sontag universal formula and the results are compared against optical tweezer-based unfolding.

PDF Abstract
No code implementations yet. Submit your code now


  Add Datasets introduced or used in this paper

Results from the Paper

  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.


No methods listed for this paper. Add relevant methods here