CipherFace: A Fully Homomorphic Encryption-Driven Framework for Secure Cloud-Based Facial Recognition

22 Feb 2025  ·  Sefik Serengil, Alper Ozpinar ·

Facial recognition systems rely on embeddings to represent facial images and determine identity by verifying if the distance between embeddings is below a pre-tuned threshold. While embeddings are not reversible to original images, they still contain sensitive information, making their security critical. Traditional encryption methods like AES are limited in securely utilizing cloud computational power for distance calculations. Homomorphic Encryption, allowing calculations on encrypted data, offers a robust alternative. This paper introduces CipherFace, a homomorphic encryption-driven framework for secure cloud-based facial recognition, which we have open-sourced at http://github.com/serengil/cipherface. By leveraging FHE, CipherFace ensures the privacy of embeddings while utilizing the cloud for efficient distance computation. Furthermore, we propose a novel encrypted distance computation method for both Euclidean and Cosine distances, addressing key challenges in performing secure similarity calculations on encrypted data. We also conducted experiments with different facial recognition models, various embedding sizes, and cryptosystem configurations, demonstrating the scalability and effectiveness of CipherFace in real-world applications.

PDF Abstract

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here