Coordinate-free Circumnavigation of a Moving Target via a PD-like Controller

16 Feb 2020  ·  Fei Dong, Keyou You, Lihua Xie, Qinglei Hu ·

This paper proposes a coordinate-free controller for a nonholonomic vehicle to circumnavigate a fully-actuated moving target by using range-only measurements. If the range rate is available, our Proportional Derivative (PD)-like controller has a simple structure as the standard PD controller, except the design of an additive constant bias and a saturation function in the error feedback. We show that if the target is stationary, the vehicle asymptotically encloses the target with a predefined radius at an exponential convergence rate, i.e., an exact circumnavigation pattern can be completed. For a moving target, the circumnavigation error converges to a small region whose size is shown proportional to the maneuverability of the target, e.g., the maximum linear speed and acceleration. Moreover, we design a second-order sliding mode (SOSM) filter to estimate the range rate and show that the SOSM filter can recover the range rate in a finite time. Finally, the effectiveness and advantages of our controller are validated via both numerical simulations and real experiments.

PDF Abstract
No code implementations yet. Submit your code now

Tasks


Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here