Class-Conditional Compression and Disentanglement: Bridging the Gap between Neural Networks and Naive Bayes Classifiers

6 Jun 2019  ·  Rana Ali Amjad, Bernhard C. Geiger ·

In this draft, which reports on work in progress, we 1) adapt the information bottleneck functional by replacing the compression term by class-conditional compression, 2) relax this functional using a variational bound related to class-conditional disentanglement, 3) consider this functional as a training objective for stochastic neural networks, and 4) show that the latent representations are learned such that they can be used in a naive Bayes classifier. We continue by suggesting a series of experiments along the lines of Nonlinear In-formation Bottleneck [Kolchinsky et al., 2018], Deep Variational Information Bottleneck [Alemi et al., 2017], and Information Dropout [Achille and Soatto, 2018]. We furthermore suggest a neural network where the decoder architecture is a parameterized naive Bayes decoder.

PDF Abstract
No code implementations yet. Submit your code now


  Add Datasets introduced or used in this paper

Results from the Paper

  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.