Classification Logit Two-sample Testing by Neural Networks

25 Sep 2019  ·  Xiuyuan Cheng, Alexander Cloninger ·

The recent success of generative adversarial networks and variational learning suggests training a classifier network may work well in addressing the classical two-sample problem. Network-based tests have the computational advantage that the algorithm scales to large samples. This paper proposes a two-sample statistic which is the difference of the logit function, provided by a trained classification neural network, evaluated on the testing set split of the two datasets. Theoretically, we prove the testing power to differentiate two sub-exponential densities given that the network is sufficiently parametrized. When the two densities lie on or near to low-dimensional manifolds embedded in possibly high-dimensional space, the needed network complexity is reduced to only scale with the intrinsic dimensionality. Both the approximation and estimation error analysis are based on a new result of near-manifold integral approximation. In experiments, the proposed method demonstrates better performance than previous network-based tests using classification accuracy as the two-sample statistic, and compares favorably to certain kernel maximum mean discrepancy tests on synthetic datasets and hand-written digit datasets.

PDF Abstract


  Add Datasets introduced or used in this paper

Results from the Paper

  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.


No methods listed for this paper. Add relevant methods here