Classification of Alzheimer's Disease using fMRI Data and Deep Learning Convolutional Neural Networks

29 Mar 2016  ·  Saman Sarraf, Ghassem Tofighi ·

Over the past decade, machine learning techniques especially predictive modeling and pattern recognition in biomedical sciences from drug delivery system to medical imaging has become one of the important methods which are assisting researchers to have deeper understanding of entire issue and to solve complex medical problems. Deep learning is power learning machine learning algorithm in classification while extracting high-level features. In this paper, we used convolutional neural network to classify Alzheimer's brain from normal healthy brain. The importance of classifying this kind of medical data is to potentially develop a predict model or system in order to recognize the type disease from normal subjects or to estimate the stage of the disease. Classification of clinical data such as Alzheimer's disease has been always challenging and most problematic part has been always selecting the most discriminative features. Using Convolutional Neural Network (CNN) and the famous architecture LeNet-5, we successfully classified functional MRI data of Alzheimer's subjects from normal controls where the accuracy of test data on trained data reached 96.85%. This experiment suggests us the shift and scale invariant features extracted by CNN followed by deep learning classification is most powerful method to distinguish clinical data from healthy data in fMRI. This approach also enables us to expand our methodology to predict more complicated systems.

PDF Abstract

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here