Classification of Noncoding RNA Elements Using Deep Convolutional Neural Networks

24 Aug 2020  ·  Brian McClannahan, Krushi Patel, Usman Sajid, Cuncong Zhong, Guanghui Wang ·

The paper proposes to employ deep convolutional neural networks (CNNs) to classify noncoding RNA (ncRNA) sequences. To this end, we first propose an efficient approach to convert the RNA sequences into images characterizing their base-pairing probability. As a result, classifying RNA sequences is converted to an image classification problem that can be efficiently solved by available CNN-based classification models. The paper also considers the folding potential of the ncRNAs in addition to their primary sequence. Based on the proposed approach, a benchmark image classification dataset is generated from the RFAM database of ncRNA sequences. In addition, three classical CNN models have been implemented and compared to demonstrate the superior performance and efficiency of the proposed approach. Extensive experimental results show the great potential of using deep learning approaches for RNA classification.

PDF Abstract

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here