Classifying Nodes in Graphs without GNNs

8 Feb 2024  ·  Daniel Winter, Niv Cohen, Yedid Hoshen ·

Graph neural networks (GNNs) are the dominant paradigm for classifying nodes in a graph, but they have several undesirable attributes stemming from their message passing architecture. Recently, distillation methods succeeded in eliminating the use of GNNs at test time but they still require them during training. We perform a careful analysis of the role that GNNs play in distillation methods. This analysis leads us to propose a fully GNN-free approach for node classification, not requiring them at train or test time. Our method consists of three key components: smoothness constraints, pseudo-labeling iterations and neighborhood-label histograms. Our final approach can match the state-of-the-art accuracy on standard popular benchmarks such as citation and co-purchase networks, without training a GNN.

PDF Abstract

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here