Closed-loop Performance Optimization of Model Predictive Control with Robustness Guarantees

7 Mar 2024  ·  Riccardo Zuliani, Efe C. Balta, John Lygeros ·

Model mismatch and process noise are two frequently occurring phenomena that can drastically affect the performance of model predictive control (MPC) in practical applications. We propose a principled way to tune the cost function and the constraints of linear MPC schemes to achieve good performance and robust constraint satisfaction on uncertain nonlinear dynamics with additive noise. The tuning is performed using a novel MPC tuning algorithm based on backpropagation developed in our earlier work. Using the scenario approach, we provide probabilistic bounds on the likelihood of closed-loop constraint violation over a finite horizon. We showcase the effectiveness of the proposed method on linear and nonlinear simulation examples.

PDF Abstract
No code implementations yet. Submit your code now

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here