Cloze Evaluation for Deeper Understanding of Commonsense Stories in Indonesian

Story comprehension that involves complex causal and temporal relations is a critical task in NLP, but previous studies have focused predominantly on English, leaving open the question of how the findings generalize to other languages, such as Indonesian. In this paper, we follow the Story Cloze Test framework of Mostafazadeh et al. (2016) in evaluating story understanding in Indonesian, by constructing a four-sentence story with one correct ending and one incorrect ending. To investigate commonsense knowledge acquisition in language models, we experimented with: (1) a classification task to predict the correct ending; and (2) a generation task to complete the story with a single sentence. We investigate these tasks in two settings: (i) monolingual training and ii) zero-shot cross-lingual transfer between Indonesian and English.

PDF Abstract


  Add Datasets introduced or used in this paper

Results from the Paper

  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.


No methods listed for this paper. Add relevant methods here