Clustering and Inference From Pairwise Comparisons

16 Feb 2015  ·  Rui Wu, Jiaming Xu, R. Srikant, Laurent Massoulié, Marc Lelarge, Bruce Hajek ·

Given a set of pairwise comparisons, the classical ranking problem computes a single ranking that best represents the preferences of all users. In this paper, we study the problem of inferring individual preferences, arising in the context of making personalized recommendations. In particular, we assume that there are $n$ users of $r$ types; users of the same type provide similar pairwise comparisons for $m$ items according to the Bradley-Terry model. We propose an efficient algorithm that accurately estimates the individual preferences for almost all users, if there are $r \max \{m, n\}\log m \log^2 n$ pairwise comparisons per type, which is near optimal in sample complexity when $r$ only grows logarithmically with $m$ or $n$. Our algorithm has three steps: first, for each user, compute the \emph{net-win} vector which is a projection of its $\binom{m}{2}$-dimensional vector of pairwise comparisons onto an $m$-dimensional linear subspace; second, cluster the users based on the net-win vectors; third, estimate a single preference for each cluster separately. The net-win vectors are much less noisy than the high dimensional vectors of pairwise comparisons and clustering is more accurate after the projection as confirmed by numerical experiments. Moreover, we show that, when a cluster is only approximately correct, the maximum likelihood estimation for the Bradley-Terry model is still close to the true preference.

PDF Abstract
No code implementations yet. Submit your code now

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here