Clustering by latent dimensions

28 May 2018Shohei HidakaNeeraj Kashyap

This paper introduces a new clustering technique, called {\em dimensional clustering}, which clusters each data point by its latent {\em pointwise dimension}, which is a measure of the dimensionality of the data set local to that point. Pointwise dimension is invariant under a broad class of transformations... (read more)

PDF Abstract

Code


No code implementations yet. Submit your code now

Tasks


Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods used in the Paper


METHOD TYPE
🤖 No Methods Found Help the community by adding them if they're not listed; e.g. Deep Residual Learning for Image Recognition uses ResNet