CNN Is All You Need

27 Dec 2017Qiming ChenRen Wu

The Convolution Neural Network (CNN) has demonstrated the unique advantage in audio, image and text learning; recently it has also challenged Recurrent Neural Networks (RNNs) with long short-term memory cells (LSTM) in sequence-to-sequence learning, since the computations involved in CNN are easily parallelizable whereas those involved in RNN are mostly sequential, leading to a performance bottleneck. However, unlike RNN, the native CNN lacks the history sensitivity required for sequence transformation; therefore enhancing the sequential order awareness, or position-sensitivity, becomes the key to make CNN the general deep learning model... (read more)

PDF Abstract

Code


No code implementations yet. Submit your code now

Tasks


Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods used in the Paper