Towards Cross-Granularity Few-Shot Learning: Coarse-to-Fine Pseudo-Labeling with Visual-Semantic Meta-Embedding

11 Jul 2020  ·  Jinhai Yang, Hua Yang, Lin Chen ·

Few-shot learning aims at rapidly adapting to novel categories with only a handful of samples at test time, which has been predominantly tackled with the idea of meta-learning. However, meta-learning approaches essentially learn across a variety of few-shot tasks and thus still require large-scale training data with fine-grained supervision to derive a generalized model, thereby involving prohibitive annotation cost. In this paper, we advance the few-shot classification paradigm towards a more challenging scenario, i.e., cross-granularity few-shot classification, where the model observes only coarse labels during training while is expected to perform fine-grained classification during testing. This task largely relieves the annotation cost since fine-grained labeling usually requires strong domain-specific expertise. To bridge the cross-granularity gap, we approximate the fine-grained data distribution by greedy clustering of each coarse-class into pseudo-fine-classes according to the similarity of image embeddings. We then propose a meta-embedder that jointly optimizes the visual- and semantic-discrimination, in both instance-wise and coarse class-wise, to obtain a good feature space for this coarse-to-fine pseudo-labeling process. Extensive experiments and ablation studies are conducted to demonstrate the effectiveness and robustness of our approach on three representative datasets.

PDF Abstract

Results from the Paper

  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.


No methods listed for this paper. Add relevant methods here