Code-Bridged Classifier (CBC): A Low or Negative Overhead Defense for Making a CNN Classifier Robust Against Adversarial Attacks

In this paper, we propose Code-Bridged Classifier (CBC), a framework for making a Convolutional Neural Network (CNNs) robust against adversarial attacks without increasing or even by decreasing the overall models' computational complexity. More specifically, we propose a stacked encoder-convolutional model, in which the input image is first encoded by the encoder module of a denoising auto-encoder, and then the resulting latent representation (without being decoded) is fed to a reduced complexity CNN for image classification... (read more)

Results in Papers With Code
(↓ scroll down to see all results)