Cognitive Radio Network Throughput Maximization with Deep Reinforcement Learning

Radio Frequency powered Cognitive Radio Networks (RF-CRN) are likely to be the eyes and ears of upcoming modern networks such as Internet of Things (IoT), requiring increased decentralization and autonomous operation. To be considered autonomous, the RF-powered network entities need to make decisions locally to maximize the network throughput under the uncertainty of any network environment... (read more)

PDF Abstract
No code implementations yet. Submit your code now


Results from the Paper

  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods used in the Paper