CogVLM2: Visual Language Models for Image and Video Understanding

Beginning with VisualGLM and CogVLM, we are continuously exploring VLMs in pursuit of enhanced vision-language fusion, efficient higher-resolution architecture, and broader modalities and applications. Here we propose the CogVLM2 family, a new generation of visual language models for image and video understanding including CogVLM2, CogVLM2-Video and GLM-4V. As an image understanding model, CogVLM2 inherits the visual expert architecture with improved training recipes in both pre-training and post-training stages, supporting input resolution up to $1344 \times 1344$ pixels. As a video understanding model, CogVLM2-Video integrates multi-frame input with timestamps and proposes automated temporal grounding data construction. Notably, CogVLM2 family has achieved state-of-the-art results on benchmarks like MMBench, MM-Vet, TextVQA, MVBench and VCGBench. All models are open-sourced in https://github.com/THUDM/CogVLM2 and https://github.com/THUDM/GLM-4, contributing to the advancement of the field.

PDF Abstract

Results from the Paper


Task Dataset Model Metric Name Metric Value Global Rank Benchmark
Visual Question Answering MM-Vet GLM-4V-Plus GPT-4 score 71.1 # 10
Visual Question Answering MM-Vet GLM-4V-9B GPT-4 score 58.0 # 42

Methods


No methods listed for this paper. Add relevant methods here