Collaborative Descriptors: Convolutional Maps for Preprocessing
The paper presents a novel concept for collaborative descriptors between deeply learned and hand-crafted features. To achieve this concept, we apply convolutional maps for pre-processing, namely the convovlutional maps are used as input of hand-crafted features. We recorded an increase in the performance rate of +17.06 % (multi-class object recognition) and +24.71 % (car detection) from grayscale input to convolutional maps. Although the framework is straight-forward, the concept should be inherited for an improved representation.
PDF AbstractTasks
Datasets
Results from the Paper
Submit
results from this paper
to get state-of-the-art GitHub badges and help the
community compare results to other papers.
Methods
No methods listed for this paper. Add
relevant methods here