Collaborative Generated Hashing for Market Analysis and Fast Cold-start Recommendation

ICLR 2020 Yan ZhangIvor W. TsangLixin DuanGuowu Yang

Cold-start and efficiency issues of the Top-k recommendation are critical to large-scale recommender systems. Previous hybrid recommendation methods are effective to deal with the cold-start issues by extracting real latent factors of cold-start items(users) from side information, but they still suffer low efficiency in online recommendation caused by the expensive similarity search in real latent space... (read more)

PDF Abstract

Code


No code implementations yet. Submit your code now

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods used in the Paper


METHOD TYPE
MDL
AutoML