Collaborative Inference for Efficient Remote Monitoring

12 Feb 2020  ·  Chi Zhang, Yong Sheng Soh, Ling Feng, Tianyi Zhou, Qianxiao Li ·

While current machine learning models have impressive performance over a wide range of applications, their large size and complexity render them unsuitable for tasks such as remote monitoring on edge devices with limited storage and computational power. A naive approach to resolve this on the model level is to use simpler architectures, but this sacrifices prediction accuracy and is unsuitable for monitoring applications requiring accurate detection of the onset of adverse events. In this paper, we propose an alternative solution to this problem by decomposing the predictive model as the sum of a simple function which serves as a local monitoring tool, and a complex correction term to be evaluated on the server. A sign requirement is imposed on the latter to ensure that the local monitoring function is safe, in the sense that it can effectively serve as an early warning system. Our analysis quantifies the trade-offs between model complexity and performance, and serves as a guidance for architecture design. We validate our proposed framework on a series of monitoring experiments, where we succeed at learning monitoring models with significantly reduced complexity that minimally violate the safety requirement. More broadly, our framework is useful for learning classifiers in applications where false negatives are significantly more costly compared to false positives.

PDF Abstract
No code implementations yet. Submit your code now

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here