Paper

Collapsed Amortized Variational Inference for Switching Nonlinear Dynamical Systems

We propose an efficient inference method for switching nonlinear dynamical systems. The key idea is to learn an inference network which can be used as a proposal distribution for the continuous latent variables, while performing exact marginalization of the discrete latent variables. This allows us to use the reparameterization trick, and apply end-to-end training with stochastic gradient descent. We show that the proposed method can successfully segment time series data, including videos and 3D human pose, into meaningful ``regimes'' by using the piece-wise nonlinear dynamics.

Results in Papers With Code
(↓ scroll down to see all results)