Combinatorial Multi-Armed Bandit and Its Extension to Probabilistically Triggered Arms

31 Jul 2014  ·  Wei Chen, Yajun Wang, Yang Yuan, Qinshi Wang ·

We define a general framework for a large class of combinatorial multi-armed bandit (CMAB) problems, where subsets of base arms with unknown distributions form super arms. In each round, a super arm is played and the base arms contained in the super arm are played and their outcomes are observed. We further consider the extension in which more based arms could be probabilistically triggered based on the outcomes of already triggered arms. The reward of the super arm depends on the outcomes of all played arms, and it only needs to satisfy two mild assumptions, which allow a large class of nonlinear reward instances. We assume the availability of an offline (\alpha,\beta)-approximation oracle that takes the means of the outcome distributions of arms and outputs a super arm that with probability {\beta} generates an {\alpha} fraction of the optimal expected reward. The objective of an online learning algorithm for CMAB is to minimize (\alpha,\beta)-approximation regret, which is the difference between the \alpha{\beta} fraction of the expected reward when always playing the optimal super arm, and the expected reward of playing super arms according to the algorithm. We provide CUCB algorithm that achieves O(log n) distribution-dependent regret, where n is the number of rounds played, and we further provide distribution-independent bounds for a large class of reward functions. Our regret analysis is tight in that it matches the bound of UCB1 algorithm (up to a constant factor) for the classical MAB problem, and it significantly improves the regret bound in a earlier paper on combinatorial bandits with linear rewards. We apply our CMAB framework to two new applications, probabilistic maximum coverage and social influence maximization, both having nonlinear reward structures. In particular, application to social influence maximization requires our extension on probabilistically triggered arms.

PDF Abstract
No code implementations yet. Submit your code now



  Add Datasets introduced or used in this paper

Results from the Paper

  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.


No methods listed for this paper. Add relevant methods here