Combinatorial Pure Exploration of Dueling Bandit

23 Jun 2020  ·  Wei Chen, Yihan Du, Longbo Huang, Haoyu Zhao ·

In this paper, we study combinatorial pure exploration for dueling bandits (CPE-DB): we have multiple candidates for multiple positions as modeled by a bipartite graph, and in each round we sample a duel of two candidates on one position and observe who wins in the duel, with the goal of finding the best candidate-position matching with high probability after multiple rounds of samples. CPE-DB is an adaptation of the original combinatorial pure exploration for multi-armed bandit (CPE-MAB) problem to the dueling bandit setting. We consider both the Borda winner and the Condorcet winner cases. For Borda winner, we establish a reduction of the problem to the original CPE-MAB setting and design PAC and exact algorithms that achieve both the sample complexity similar to that in the CPE-MAB setting (which is nearly optimal for a subclass of problems) and polynomial running time per round. For Condorcet winner, we first design a fully polynomial time approximation scheme (FPTAS) for the offline problem of finding the Condorcet winner with known winning probabilities, and then use the FPTAS as an oracle to design a novel pure exploration algorithm ${\sf CAR}$-${\sf Cond}$ with sample complexity analysis. ${\sf CAR}$-${\sf Cond}$ is the first algorithm with polynomial running time per round for identifying the Condorcet winner in CPE-DB.

PDF Abstract
No code implementations yet. Submit your code now

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here