Combinets: Creativity via Recombination of Neural Networks

10 Feb 2018  ·  Matthew Guzdial, Mark O. Riedl ·

One of the defining characteristics of human creativity is the ability to make conceptual leaps, creating something surprising from typical knowledge. In comparison, deep neural networks often struggle to handle cases outside of their training data, which is especially problematic for problems with limited training data. Approaches exist to transfer knowledge from problems with sufficient data to those with insufficient data, but they tend to require additional training or a domain-specific method of transfer. We present a new approach, conceptual expansion, that serves as a general representation for reusing existing trained models to derive new models without backpropagation. We evaluate our approach on few-shot variations of two tasks: image classification and image generation, and outperform standard transfer learning approaches.

PDF Abstract

Results from the Paper

  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.


No methods listed for this paper. Add relevant methods here