Combining pattern-based CRFs and weighted context-free grammars

22 Apr 2014  ·  Rustem Takhanov, Vladimir Kolmogorov ·

We consider two models for the sequence labeling (tagging) problem. The first one is a {\em Pattern-Based Conditional Random Field }(\PB), in which the energy of a string (chain labeling) $x=x_1\ldots x_n\in D^n$ is a sum of terms over intervals $[i,j]$ where each term is non-zero only if the substring $x_i\ldots x_j$ equals a prespecified word $w\in \Lambda$... The second model is a {\em Weighted Context-Free Grammar }(\WCFG) frequently used for natural language processing. \PB and \WCFG encode local and non-local interactions respectively, and thus can be viewed as complementary. We propose a {\em Grammatical Pattern-Based CRF model }(\GPB) that combines the two in a natural way. We argue that it has certain advantages over existing approaches such as the {\em Hybrid model} of Bened{\'i} and Sanchez that combines {\em $\mbox{$N$-grams}$} and \WCFGs. The focus of this paper is to analyze the complexity of inference tasks in a \GPB such as computing MAP. We present a polynomial-time algorithm for general \GPBs and a faster version for a special case that we call {\em Interaction Grammars}. read more

PDF Abstract
No code implementations yet. Submit your code now

Tasks


Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods