Combining Shallow and Deep Representations for Text-Pair Classification

Text-pair classification is the task of determining the class relationship between two sentences. It is embedded in several tasks such as paraphrase identification and duplicate question detection. Contemporary methods use fine-tuned transformer encoder semantic representations of the classification token in the text-pair sequence from the transformer’s final layer for class prediction. However, research has shown that earlier parts of the network learn shallow features, such as syntax and structure, which existing methods do not directly exploit. We propose a novel convolution-based decoder for transformer-based architecture that maximizes the use of encoder hidden features for text-pair classification. Our model exploits hidden representations within transformer-based architecture. It outperforms a transformer encoder baseline on average by 50% (relative F1-score) on six datasets from the medical, software engineering, and open-domains. Our work shows that transformer-based models can improve text-pair classification by modifying the fine-tuning step to exploit shallow features while improving model generalization, with only a slight reduction in efficiency.

PDF Abstract


Results from the Paper

  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.


No methods listed for this paper. Add relevant methods here