Comment on "Adv-BNN: Improved Adversarial Defense through Robust Bayesian Neural Network"

1 Jul 2019  ·  Roland S. Zimmermann ·

A recent paper by Liu et al. combines the topics of adversarial training and Bayesian Neural Networks (BNN) and suggests that adversarially trained BNNs are more robust against adversarial attacks than their non-Bayesian counterparts. Here, I analyze the proposed defense and suggest that one needs to adjust the adversarial attack to incorporate the stochastic nature of a Bayesian network to perform an accurate evaluation of its robustness. Using this new type of attack I show that there appears to be no strong evidence for higher robustness of the adversarially trained BNNs.

PDF Abstract

Datasets


Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here