Communication-efficient Algorithms for Distributed Stochastic Principal Component Analysis

ICML 2017  ·  Dan Garber, Ohad Shamir, Nathan Srebro ·

We study the fundamental problem of Principal Component Analysis in a statistical distributed setting in which each machine out of $m$ stores a sample of $n$ points sampled i.i.d. from a single unknown distribution. We study algorithms for estimating the leading principal component of the population covariance matrix that are both communication-efficient and achieve estimation error of the order of the centralized ERM solution that uses all $mn$ samples. On the negative side, we show that in contrast to results obtained for distributed estimation under convexity assumptions, for the PCA objective, simply averaging the local ERM solutions cannot guarantee error that is consistent with the centralized ERM. We show that this unfortunate phenomena can be remedied by performing a simple correction step which correlates between the individual solutions, and provides an estimator that is consistent with the centralized ERM for sufficiently-large $n$. We also introduce an iterative distributed algorithm that is applicable in any regime of $n$, which is based on distributed matrix-vector products. The algorithm gives significant acceleration in terms of communication rounds over previous distributed algorithms, in a wide regime of parameters.

PDF Abstract ICML 2017 PDF ICML 2017 Abstract
No code implementations yet. Submit your code now

Tasks


Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here