Communication-Efficient Decentralized Learning with Sparsification and Adaptive Peer Selection

22 Feb 2020Zhenheng TangShaohuai ShiXiaowen Chu

Distributed learning techniques such as federated learning have enabled multiple workers to train machine learning models together to reduce the overall training time. However, current distributed training algorithms (centralized or decentralized) suffer from the communication bottleneck on multiple low-bandwidth workers (also on the server under the centralized architecture)... (read more)

PDF Abstract


No code implementations yet. Submit your code now


Results from the Paper

  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods used in the Paper

🤖 No Methods Found Help the community by adding them if they're not listed; e.g. Deep Residual Learning for Image Recognition uses ResNet