Communication-Efficient Distributed Kalman Filtering using ADMM

22 Jan 2025  ·  Muhammad Iqbal, Kundan Kumar, Simo Särkkä ·

This paper addresses the problem of optimal linear filtering in a network of local estimators, commonly referred to as distributed Kalman filtering (DKF). The DKF problem is formulated within a distributed optimization framework, where coupling constraints require the exchange of local state and covariance updates between neighboring nodes to achieve consensus. To address these constraints, the problem is transformed into an unconstrained optimization form using the augmented Lagrangian method. The distributed alternating direction method of multipliers (ADMM) is then applied to derive update steps that achieve the desired performance while exchanging only the primal variables. Notably, the proposed method enhances communication efficiency by eliminating the need for dual variable exchange. We show that the design parameters depend on the maximum eigenvalue of the network's Laplacian matrix, yielding a significantly tighter bound compared to existing results. A rigorous convergence analysis is provided, proving that the state estimates converge to the true state and that the covariance matrices across all local estimators converge to a globally optimal solution. Numerical results are presented to validate the efficacy of the proposed approach.

PDF Abstract
No code implementations yet. Submit your code now

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here