Compact Representation for Image Classification: To Choose or to Compress?

CVPR 2014 Yu ZhangJianxin WuJianfei Cai

In large scale image classification, features such as Fisher vector or VLAD have achieved state-of-the-art results. However, the combination of large number of examples and high dimensional vectors necessitates dimensionality reduction, in order to reduce its storage and CPU costs to a reasonable range... (read more)

PDF Abstract

Results from the Paper

  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods used in the Paper

🤖 No Methods Found Help the community by adding them if they're not listed; e.g. Deep Residual Learning for Image Recognition uses ResNet