Human Sentence Processing: Recurrence or Attention?

NAACL (CMCL) 2021  ·  Danny Merkx, Stefan L. Frank ·

Recurrent neural networks (RNNs) have long been an architecture of interest for computational models of human sentence processing. The recently introduced Transformer architecture outperforms RNNs on many natural language processing tasks but little is known about its ability to model human language processing. We compare Transformer- and RNN-based language models' ability to account for measures of human reading effort. Our analysis shows Transformers to outperform RNNs in explaining self-paced reading times and neural activity during reading English sentences, challenging the widely held idea that human sentence processing involves recurrent and immediate processing and provides evidence for cue-based retrieval.

PDF Abstract NAACL (CMCL) 2021 PDF NAACL (CMCL) 2021 Abstract

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods