Comparison of atlas-based and neural-network-based semantic segmentation for DENSE MRI images

29 Sep 2021  ·  Elle Buser, Emma Hart, Ben Huenemann ·

Two segmentation methods, one atlas-based and one neural-network-based, were compared to see how well they can each automatically segment the brain stem and cerebellum in Displacement Encoding with Stimulated Echoes Magnetic Resonance Imaging (DENSE-MRI) data. The segmentation is a pre-requisite for estimating the average displacements in these regions, which have recently been proposed as biomarkers in the diagnosis of Chiari Malformation type I (CMI). In numerical experiments, the segmentations of both methods were similar to manual segmentations provided by trained experts. It was found that, overall, the neural-network-based method alone produced more accurate segmentations than the atlas-based method did alone, but that a combination of the two methods -- in which the atlas-based method is used for the segmentation of the brain stem and the neural-network is used for the segmentation of the cerebellum -- may be the most successful.

PDF Abstract
No code implementations yet. Submit your code now


  Add Datasets introduced or used in this paper

Results from the Paper

  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.


No methods listed for this paper. Add relevant methods here