Comparison of non-linear activation functions for deep neural networks on MNIST classification task

8 Apr 2018Dabal Pedamonti

Activation functions play a key role in neural networks so it becomes fundamental to understand their advantages and disadvantages in order to achieve better performances. This paper will first introduce common types of non linear activation functions that are alternative to the well known sigmoid function and then evaluate their characteristics... (read more)

PDF Abstract


No code implementations yet. Submit your code now


Results from the Paper

  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods used in the Paper

🤖 No Methods Found Help the community by adding them if they're not listed; e.g. Deep Residual Learning for Image Recognition uses ResNet