Competition-Based Resilience in Distributed Quadratic Optimization

26 Mar 2022  ·  Luca Ballotta, Giacomo Como, Jeff S. Shamma, Luca Schenato ·

This paper proposes a novel approach to resilient distributed optimization with quadratic costs in a networked control system (e.g., wireless sensor network, power grid, robotic team) prone to external attacks (e.g., hacking, power outage) that cause agents to misbehave. Departing from classical filtering strategies proposed in literature, we draw inspiration from a game-theoretic formulation of the consensus problem and argue that adding competition to the mix can enhance resilience in the presence of malicious agents. Our intuition is corroborated by analytical and numerical results showing that i) our strategy highlights the presence of a nontrivial tradeoff between blind collaboration and full competition, and ii) such competition-based approach can outperform state-of-the-art algorithms based on Mean Subsequence Reduced.

PDF Abstract
No code implementations yet. Submit your code now

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here