Competitive Coevolution as an Adversarial Approach to Dynamic Optimization

31 Jul 2019Xiaofen LuKe TangStefan MenzelXin Yao

Dynamic optimization, for which the objective functions change over time, has attracted intensive investigations due to the inherent uncertainty associated with many real-world problems. For its robustness with respect to noise, Evolutionary Algorithms (EAs) have been expected to have great potential for dynamic optimization... (read more)

PDF Abstract

Code


No code implementations yet. Submit your code now

Tasks


Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods used in the Paper


METHOD TYPE
🤖 No Methods Found Help the community by adding them if they're not listed; e.g. Deep Residual Learning for Image Recognition uses ResNet